Моделист конструктор зарядка асимметричным током. Способ заряда асимметричным (реверсивным) током

Значительно лучших эксплуатационных характеристик аккумуляторов можно добиться, если их зарядку производить асимметричным томом. Схема устройства зарядки, реализующая такой принцип, показана на рисунке.

При положительном полупериоде входного переменного напряжения ток протекает через элементы VD1, R1 и стабилизируется диодом VD2. Часть стабилизированного напряжения через переменный резистор R3 подается на базу транзистора VT2. Транзисторы VT2 и VT4 нижнего плеча устройства работают как генератор тока, величина которого зависит от сопротивления резистора R4 и напряжения на базе VT2. Зарядный ток в цепи аккумулятора протекает по элементам VD3, SA1.1, РА1, SA1.2, аккумулятор, коллекторный перепад транзистора VT4, R4.

При отрицательном полупериоде переменного напряжения на диоде VD1 рабо-та устройства аналогична, но работает верхнее плечо - VD1 стабилизирует отрицательное напряжение, которое регулирует протекающий по аккумулятору ток в обратном напряжении (ток разрядки).

Показанный на схеме миллиамперметр РА1 используется при первоначальной настройке, в дальнейшем его можно отключить, переведя переключатель в другое положение.

Такое зарядное устройство обладает следующими преимуществами: 1. Зарядный и разрядный токи можно регулировать независимо друг от друга. Следова-тельно, в данном устройстве возможно применять аккумуляторы с различной величиной энергоемкости. 2. При каких-либо пропаданиях переменного напряжения каждое из плеч закрывается и через аккумулятор ток не протекает, что защищает аккумулятор от самопроизвольной разрядки.

В данном устройстве из отечественных элементов можно применить в качестве VD1 и VD2 - KC133A, VT1 и VT2 - КТ315Б или КТ503Б. Остальные элементы выбираются в зависимости от зарядного тока. Если он не превышает 100 мА, то в качестве транзисторов VT3 и VT4 следует применить КГ815 или КТ807 с любыми буквенными индексами (расположить на теплоотводе с площадью теплорассеиваюшей поверхности 5...15 кв.см), а в качестве диодов VD3 и VD4 - Д226, КД105 тоже с любыми буквенными индексами.

Современные автомобильные аккумуляторные батареи выпускаются необслуживаемыми или малообслуживаемыми, а срок их службы напрямую зависит от их правильной эксплуатации. При неправильной эксплуатации их пластины могут сульфатироваться, из-за чего они выходят из строя.

Для устранения сульфатации пластин применим способ зарядки таких батарей "асимметричным" током. При этом оптимальным соотношением зарядного и разрядного тока выбирается как 10:1. Этот способ позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных.

Схема простого зарядного устройства, рассчитанного на использование выше описанного способа, приведена на рис. 1

Для восстановления и тренировки широко распространённых аккумуляторов, емкостью 55А/ч, применим импульсный зарядный ток 5 А, при этом ток разряда будет 0.5 А. Разрядный ток определяется номиналом резистора R4.

Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты, а аккумулятор разряжается через нагрузочное сопротивление R4.

Основным регулирующим элементом является транзисторный стабилизатор тока. Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.

В случае пропадания сетевого напряжения предусмотрена аккумулятора от неконтролируемого разряда на резистор R4 при помощи реле К1, которое своими контактами разомкнёт цепь подключения аккумулятора.

В качестве реле К1 применено типа РПУ с рабочим напряжением обмотки 24 В. напряжение срабатывания меньше, то последовательно с обмоткой включается ограничительный резистор.

В зарядном устройстве используется трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22…25 В (ток 5…7 А). Измерительный прибор РА1 подойдет со шкалой 0...5 А (0...3 А), например М42100, а его шкалу потребуется переградуировать (множитель ≈2,5).

Транзистор VT1 устанавливается на радиатор площадью не менее 200 кв. см, в качестве которого можно использовать металлический корпус самого зарядного устройства.

В схеме применяется транзистор с большим коэффициентом усиления, который можно заменить на составной транзистор, как показано на рис. 2.

Самое простое, но самое правильное зарядное устройство

Впервые столкнувшись с необходимостью реанимации уже мертвых аккумуляторов, я решил изучить вопрос и задаться целью "впихнуть невпихуемое", т.е. выжать из приготовленных на выброс АКБ последнее. Вопрос этот встал в середине 90х - в то время самыми распространенными и используемыми были кислотные, щелочные, никель-кадмиевые и никель-металлгидридные аккумуляторы.
Сразу скажу, что штатные ЗУ, предназначенные для зарядки разных АКБ уже не справлялись: одни уже в начале цикла говорили, что ничего нельзя сделать, а другие честно проходили цикл, но АКБ свою емкость так и не набирала даже на 10%.
Итак, есть два способа зарядки от источника постоянного тока: постоянным (во времени) током или постоянным (во времени) напряжением. Однако, в любом случае отмечается нагрев пациента и закипание (если электролит жидкий). Опуская всякие детали, перейду к тому, что же я вывел для себя.
А получается вот что: заряжать аккумуляторы нужно не только импульсами, а еще и разряжать в паузах между импульсами заряда. Но что еще важнее - импульсы постоянного тока также не очень благоприятны. В итоге родилось вот такое устройство:
Самое простое зарядное устройство "simplest charger"
Схема зарядного устройства
Это решение позволяет заряжать аккумулятор, а также разряжать в паузах длиной в полу-период.
R1 - регулируется ток заряда, который составляет 10% от емкости АКБ+Jразр.
R2 - рассчитывается так, чтоб через него в паузах разряда шел ток Jразр в 10 раз меньший, чем ток заряда. Я для этой цели использую и лампы накаливания, если токи заряда велики.
Например, если емкость АКБ 55Ач, то зарядный ток нужно поддерживать на всем протяжении заряда равным Jзар=5.5+0.55=6.1А.
Первый опыт был настолько многообещающим, что я не мог поверить.
1. Щелочной брикет 10-НКГЦ-10 был настолько мертв, что родное армейское полностью автоматическое ЗУ вообще отказывалось заряжать. Этим устройством я зарядил так, что до сих пор (с 1995 года) пользуюсь этой батареей (естественно, заряжая, при необходимости). Пусть и изредка.
2. Шахтерский фонарь выпуска 1992 года, проведший в разряженном состоянии на балконе друга несколько лет (с нашими-то зимами). На момент вручения его мне в 1997 году он вообще признаков жизни не подавал. А ведь я его до сих пор использую на рыбалке
3. Аккумулятор в первом автомобиле был при покупке забракован продавцом (UA9CDV) и был крайне рекомендован к смене первой же зимой, т.к. "намаялся он с ним"... А ведь я поездил на авто несколько лет и до сих пор на нем ездит уже третий владелец. Авто 1993 года.
4. Аккумулятор видеокамеры друга в 2000 году не держал уже даже 5 минут. После "правильной" процедуры он заставлял работать видеокамеру в течение 1 часа, хотя по паспорту она всего 45 минут могла непрерывно работать и длительней у него никогда не получалось.

Более перечислять не буду, ибо страница станет грустной.
При этом, нужно отметить, что аккумуляторы не "кипели" как при родных зарядниках и не грелись столь сильно.
Правила пользования:
1. Резистором R1 установить зарядный ток 1/10 от емкости АКБ
2. Резистором R2 установить разрядный ток 1/10 от зарядного тока
3. В течение зарядки вручную поддерживать ток заряда постоянным во времени. Это требование желательное, но сколько себя помню - ни разу его не соблюдал Поэтому ток заряда изначально ставил больше, т.к. он неизбежно снизится существенно (зависит от состояния АКБ).
4. При таких условиях, заряжать любой аккумулятор (из перечисленных в начале) нужно 14-16 часов.

В случае с Li-on и Li-Pol аккумуляторами вопрос решается гораздо сложнее: с применением зарядных процессоров и прочей обвязки, однако, у них нет памяти, поэтому есть вариант обойти различные хитрости. Но их заряжать ассиметричным током не рекомендую (лучше постоянным). Хотя и делал это неоднократно))

С учетом такого опыта, я сделал в источнике питания трансивера третью клемму, на которую подал через диод питание с трансформатора. Теперь, подключая аккумулятор к этой клемме и к минусовому выводу, я заряжаю все свои старые аккумуляторы на протяжении уже почти 10 лет. Тем более, что и ток выходит знатный!

Типы свинцово-кислотных аккумуляторов

На текущий момент на рынке аккумуляторов наиболее распространены следующие типы:

    - SLA (Sealed Lead Acid) Герметичные свинцово-кислотные или VRLA (Valve Regulated Lead Acid) клапанно-регулируемые свинцово кислотные. Изготовлены по стандартной технологии. Благодаря конструкции и применяемых материалов, не требуют проверки уровня электролита и доливки воды. Имеют невысокую устойчивость к циклированию, ограниченные возможности работы при низком разряде, стандартный пусковой ток и быстрый разряд.

    - EFB (Enhanced Flooded Battery) Технология разработана фирмой Bosch. Это промежуточная технология между стандартной и технологий AGM. От стандартной такие аккумуляторы отличаются более высокой устойчивостью к циклированию, улучшен прием заряда. Имеют более высокий пусковой ток. Как и у SLA\VRLA, есть ограничения работы при низкой заряженности.

    - AGM (Absorbed Glass Mat) На текущий момент лучшая технология (по соотношению цена\характеристики). Устойчивость к циклированию выше в 3-4 раза, быстрый заряд. Благодаря низкому внутреннему сопротивлению обладает высоким пусковым током при низкой степени заряженности. Расход воды приближен к нулю, устойчива к расслоению электролита благодаря абсорбции в AGM-сепараторе.

    - GEL (Gel Electrolite) Технология, при которой электролит находиться в виде геля. По сравнению с AGM обладают лучшей устойчивостью к циклированию, большая устойчивость к расслоению электролита. К недостаткам можно отнести высокую стоимость, и высокие требования к режиму заряда.

Существуют еще несколько технологий изготовления аккумуляторов, как связанных с изменением формы пластин, так и специфическими условиями эксплуатации. Не смотря на различие технологий, физико-химические процессы протекающие при заряде - разряде аккумулятора одинаковые. По-этому алгоритмы заряда различных типов аккумуляторов практически идентичны. Различия,в основном, связаны со значением максимального тока заряда и напряжения окончания заряда.

Например, при заряде 12-ти вольтового аккумулятора по технологии:

Определение степени заряженности аккумулятора

Есть два основных способа определения степени заряженности аккумулятора, измерение плотности электролита и измерение напряжения разомкнутой цепи (НРЦ).

НРЦ - это напряжение на аккумуляторе без подключенной нагрузки. Для герметичных (не обслуживаемых) аккумуляторов степень заряженности можно определить только измерив НРЦ. Измерять НРЦ необходимо не раньше, чем через 8 часов после остановки двигателя (отключения от зарядного устройства), с помощью вольтметра класса точности не ниже 1.0. При температуре аккумулятора 20-25оС (по рекомендации фирмы Bosch). Значения НРЦ приведены в таблице.

(у некоторых производителей значения могут отличаться от приведенных) Если степень заряженности аккумулятора меньше 80%, то рекомендуеться провести заряд.

Алгоритмы заряда аккумуляторов

Существуют несколько наиболее распространенных алгоритмов заряда аккумулятора. На текущий момент большинство производителей аккумуляторов рекомендуют алгоритм заряда CC\CV (Constant Current \ Constant Voltage – постоянный ток \ постоянное напряжение).


Такой алгоритм обеспечивает достаточно быстрый и «бережный» режим заряда аккумулятора. Для исключения долговременного пребывания аккумулятора в конце процесса заряда, большинство зарядных устройств переходит в режим поддержания (компенсации тока саморазряда) напряжения на аккумуляторе. Такой алгоритм называется трехступенчатым. График такого алгоритма заряда представлен на рисунке.

Указанные значения напряжения (14.5В и 13.2В) справедливы при заряде аккумуляторов типа SLA\VRLA,AGM. При заряде аккумуляторов типа GEL значения напряжений должны быть установлены соответственно 14.1В и 13.2В.

Дополнительные алгоритмы при заряде аккумуляторов

Предзаряд У сильно разряженного аккумулятора (НРЦ меньше 10В) увеличивается внутреннее сопротивление, что приводит к ухудшению его способности принимать заряд. Алгоритм предзаряда предназначен для «раскачки» таких аккумуляторов.

Асимметричный заряд Для уменьшения сульфатации пластин аккумулятора можно проводить заряд асимметричным током. При таком алгоритме заряд чередуется с разрядом, что приводит к частичному растворению сульфатов и восстановлению емкости аккумулятора.

Выравнивающий заряд В процессе эксплуатации аккумуляторов происходит изменение внутреннего сопротивления отдельных «банок», что в процессе заряда приводит неравномерности заряда. Для уменьшения разброса внутреннего сопротивления рекомендуется проводить выравнивающий заряд. При этом аккумулятор заряжают током 0.05...0.1C при напряжении 15.6...16.4В. Заряд проводиться в течении 2...6 часов при постоянном контроле температуры аккумулятора. Нельзя проводить выравнивающий заряд герметичных аккумуляторов, особенно по технологии GEL. Некоторые производители допускают такой заряд для VRLA\AGM аккумуляторов.

Определение емкости аккумулятора

В процессе эксплуатации аккумулятора его емкость уменьшается. Если емкость составляет 80% от номинальной, то такой аккумулятор рекомендуется заменить. Для определения емкости аккумулятор полностью заряжают. Дают отстояться в течении 1....5 часов и затем разряжают током 1\20С до напряжения 10.8В (для 12-ти вольтового аккумулятора). Количество отданных аккумулятором ампер-часов является его фактической емкостью. Некоторые производители используют для определения емкости другие значения тока разряда, и напряжения до которого разряжается аккумулятор.

Контрольно-тренировочный цикл

Для уменьшения сульфатации пластин аккумулятора одна из методик это проведение контрольно тренировочных циклов (КТЦ). КТЦ состоят из нескольких последовательных циклов заряда с последующим разрядом током 0.01...0.05С. При проведении таких циклов, сульфат растворяется, емкость аккумулятора может быть частично восстановлена.

На рис. 1 приведено простое зарядное устройство, рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Разрядный ток определяется величиной номинала резистора R4.

Рис. 1 Электрическая схема зарядного устройства.

Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4.

Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для импульсного зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.

В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22...25 В.

Измерительный прибор РА1 подойдет со шкалой 0...5 А (0...3 А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 кв. см, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства.

В схеме применяется транзистор с большим коэффициентом усиления (1000...18000), который можно заменить на КТ825 при изменении полярности включения диодов и стабилитрона, так как он другой проводимости. Последняя буква в обозначении транзистора может быть любой.

Рис. 2 Электрическая схема пускового устройства.

Для защиты схемы от случайного короткого замыкания на выходе установлен предохранитель FU2.

Резисторы применены такие R1 типа С2-23, R2 - ППБЕ-15, R3 - С5-16MB, R4 - ПЭВ-15, номинал R2 может быть от 3,3 до 15 кОм. Стабилитрон VD3 подойдет любой, с напряжением стабилизации от 7,5 до 12 В.

Приведенные схемы пускового (рис.2) и зарядного устройств (рис. 1) можно легко объединить (при этом не потребуется изолировать корпус транзистора VT1 от корпуса конструкции), для чего на пусковом трансформаторе достаточно намотать еще одну обмотку примерно 25...30 витков проводом ПЭВ-2 диаметром 1,8...2,0 мм.

Похожие публикации