Контроллеры бесколлекторных моторов (Brushless ESC). Устройство и принцип работы

Сегодня я хочу написать вкратце про "кирпичики" больших р/у моделей - приемники, регуляторы, сервоприводы и моторы. В микровертолетах все это (кроме моторов) обычно интегрировано в одну плату с целью уменьшения габаритов и веса, но в больших моделях каждый из этих элементов представляет собой отдельный функциональный узел, при этом у нас появляется возможность самим подобрать характеристики и стоимость устройств и получить аппарат с теми или иными параметрами. У тех, кто впервые столкнулся с данными устройствами может возникнуть вопрос как соединять все эти узлы между собой. Ничего сложно там нет, но тем не менее иногда имеются некоторые интересные особенности о которых не все могут знать и я постараюсь рассмотреть их в своей статье.

Приемники р/у моделей (Receivers)

Поскольку у меня в хозяйстве в основном семейство Spektrum, то и рассказывать я буду исключительно про приемники DSM2/DSMX. У спектрума есть достаточно много моделей приемников различающихся количеством каналов, массой и возможностями. По размерам и дальности приема они делятся на классы: ultra micro - для ультра-микро моделей самолетов, нередко это приемники со встроенными сервами; паркфлайерные модели - приемники без сателлитов с небольшим радиусом приема (грубо говоря для самолетов которым хватает для полета небольшой лужайки); а также приемники рассчитанные на полноценную дальность. Последние обычно рассчитаны на использование с "сателлитами" - маленькими дополнительными приемниками, которые подключаются к основному чтобы обеспечить пространственное разнесение антенн. Приемники с сателлитами есть не у всех фирм. Например, Futaba, насколько я знаю, принципиально не использует сателлиты, выезжая на лучшей помехозащищенности при кодировании сигнала. Тем не менее, пространственное разнесение антенн - эффективный и сравнительно простой способ увеличить дальность приема. Основное предназначение сателлитов - избежать затенения сигнала материалом корпуса модели, поэтому основной приемник и сателлит размещаются в разных местах модели и желательно под углом друг к другу, а приемник просто берет лучший из двух сигналов в каждый момент времени. Для моделей с полностью карбоновыми корпусами есть специальные типы приемников с выносными модулями для крепления снаружи.

Некоторые спектрумовские приемники также имеют разъемы для подключения модуля телеметрии. Блок телеметрии использует собственный передатчик для отправки на пульт данных с подключенных датчиков - это могут быть уровень сигнала приемника, напряжение батареи, температура, обороты двигателя и т. д.

Также на приемнике обычно имеется лампочка-индикатор показывающая своим миганием или горением текущее состояние связи с пультом.

Несмотря на простоту исполнения, стоимость оригинальных приемников обычно немаленькая. К счастью, на помощь в очередной раз пришли китайцы и наклепали своих версий под самые разные протоколы. Для Спектрумовского DSM2, это Хоббикинговские приемники OrangeRx - шестиканальный OrangeRx R610 , легкие четырехканальные R410 и R415 , семиканальный OrangeRx R710 и девятиканальный R910 ; ну и сателлит к ним: OrangeRx R100 Satellite Receiver . Как показывает практика, пользоваться этими приемниками вполне можно, при этом по цене они без малого на порядок меньше оригинальных. Все они работают только в режиме DSM2.

Подключение приемников радиоуправляемых моделей

Ничего сложного здесь нет. Возьмем для примера шестиканальный спектрумовский приемник AR6100E. У него есть 7 разъемов по 3 контакта. 6 разъемов - это выходы на каналы, они промаркированы в соответствии с общепринятой маркировкой каналов - Thro (Газ), Aile (Элероны), Elev (Элеватор), Rudd (Руль), Gear (Шасси, 5 канал), Aux1 (6 канал). Выводы каналов тоже промаркированы как "-", "+" и управляющий сигнал. Соответственно к каждому из каналов можно подключить сервопривод, либо регулятор напряжения бесколлекторного двигателя, либо еще какую-нибудь электронику и она будет питаться от плюса с минусом и контролироваться управляющим сигналом. Седьмой разъем обычно помечен как Batt и служит для подачи питания на приемник (если оно уже не подается через какой-нибудь другой разъем), а также для переключения приемника в режим "Bind", т. е. для процедуры привязки к пульту. Для переключения в этот режим при включении приемника управляющий контакт разъема Bat должен быть замкнут на землю, обычно для этого втыкается специальная перемычка - "Bind Pug". В приемниках с поддержкой телеметрии, этот разъем также используется для связи с модулем телеметрии. Питание на приемник может подаваться через любой из разъемов "+" и "-", т. к. они все между собой просто-напросто соединены внутри приемника. Точно так же электронные устройства получают питание с приемника - он никак не регулирует напряжение, он просто напрямую передает питание через свои разъемы, соответственно особых ограничений по току здесь нет, но будут ограничения если вы решите подключить какой-нибудь потребитель питания (например, светодиодную подсветку) непосредственно к управляющему сигналу.

Что касается маркировки проводов подключаемых к приемнику устройств, то здесь мне попадалось пока 2 "стандарта" желтый/красный/коричневый и белый/красный/черный, сигнальный провод - желтый или белый.

Бесколлекторные моторы (Brushless motors)

В микровертолетах обычно стоят коллекторные моторы, т. е. моторы с щетками и коллектором. При всей их простоте, у них один огромный недостаток - ограниченный ресурс. Щетки подгорают и перетираются и рано или поздно выходят из строя. У бесколлекторных моторов щеток нет, а кроме того значительно выше КПД, но они требуют использования обязательного электронного узла - регулятора скорости (ESC - Electronic Speed Controller, его еще называют "контроллер"), который контролирует вращение электрического магнитного поля своевременно подавая напряжение на соответствующие обмотки мотора.

Регулятору бесколлекторного мотора необходимо знать положение ротора в каждый момент времени, для этого могут использоваться либо встроенные в мотор датчики, либо импульсы обратного электромагнитного поля (кстати, именно поэтому каждому б/к мотору требуется свой собственный регулятор). Моторы без датчиков проще по конструкции, поэтому в р/у моделях в основном используется второй вариант - контроллер рассчитывает положение ротора на основе времени между импульсом напряжения питания и импульса обратного электромагнитного поля и использует эту информацию для определения фазы и того куда подать следующий импульс напряжения питания. Регулирование скорости вращения мотора происходит с помощью изменения продолжительности импульса питания (широтно-импульсная модуляция) - более длительная серия импульсов создает большее магнитное поле, которое заставляет ротор вращаться быстрее, что вынуждает контроллер увеличивать частоту подачи импульсов.

Со всем вышесказанным связано еще два немаловажных понятия - тайминг регулятора и срыв синхронизации бесколлекторного мотора. Тайминг - это нечто вроде выставления угла зажигания в карбюраторных двигателях. Он определяет сдвиг фазы подачи питания на мотор. Регуляторы обычно позволяют настроить тайминг выбором из нескольких значений. Для каждого мотора и условий его эксплуатации оптимальный тайминг может быть разным. Обычно его определяют по максимальной эффективности работы мотора в его рабочем диапазоне оборотов. Иногда может возникнуть такая ситуация, когда из-за резкого изменения нагрузки или оборотов мотора, регулятор может "упустить" данные о действительном положении ротора и заблокировать подачу питания на мотор, такое явление называется срывом синхронизации. Вероятность этого повышается при неправильно выставленном тайминге. В этом случае придется перезапускать мотор заново.

По исполнению моторы бывают инраннерами (inrunner) и аутраннерами (ourunner), в инраннерах постоянный магнит закрепленн на вращающемся роторе, в аутраннерах - на вращающемся колоколе, т. е. в аутраннерах вращается внешняя часть мотора. Поскольку аутраннеры в силу своей конструкции позволяют использовать большее число магнитных полюсов, то они развивают больший крутящий момент и позволяют обходиться без редуктора, поэтому они больше распространены для р/у моделей. Количество электрических обмоток у бесколлекторных моторов - всегда три, соответственно и подключаются они тремя проводами.

Кроме габаритов и мощности, у мотора есть еще одна важная характеристика - kV. Так принято обозначать коэффициент отношения частоты вращения оборотов мотора (об/мин) к напряжению питания мотора (В). Грубо говоря kV показывает насколько быстро будут вращаться разные моторы при одинаковом напряжении. Для разных моделей, разных используемых шестеренок и пропеллеров требуемый kV мотора подбирается и вычисляется индивидуально.

Несколько типичных аутраннеров

Обычно б/к моторы продаются с крестовиной крепления и адаптером для пропеллера, но иногда комплектация более скудная.

Регуляторы напряжения (ESC)

О том, что такое регулятор (контроллер) скорости и для чего он нужен думаю уже стало понятно из предыдущего пункта. По сути, регулятор представляет собой микроконтроллер с прошитой в него программой и силовые ключи для управления обмотками мотора.

Несколько типичных регуляторов напряжения со встроенным BEC"ом

Основная характеристика ESC - максимальный ток который он может обеспечить для питания мотора. Среди моделистов почему-то распространена привычка подбирать регуляторы с большим запасом по току. Это не всегда рационально и примеры из жизни показывают что "впритык" подобранный регулятор работает ничуть не хуже, зато весит и стоит гораздо меньше (по крайней мере это справедливо для питания от трехбаночных аккумуляторов, с ростом напряжения лучше все же иметь запас). А вот по качеству, увы, регуляторы могут сильно отличаться. К сожалению нередки случаи когда регулятор горит из-за внутреннего брака или халтурной сборки, когда кто-нибудь из китайцев решил сэкономить на термопасте.

Конструктивно, чаще всего регулятор представляет собой плату засунутую в термоусадку. Чтобы предохранить электронику от влаги многие моделисты перед установкой регулятора дополнительно герметизируют эти два конца термоусадки с помощью герметика или термоклея.

Регуляторы скорости бывают со встроенным стабилизатором напряжения (BEC - Battery Eliminator Circuit) и без него. Стабилизатор напряжения выдает 5В и используется для питания приемника, серв и прочей рассчитанной на это напряжение аппаратуры. В случае если у вашего регулятора нет встроенного BEC"a, для питания приемника и аппаратуры придется использовать отдельный стабилизатор напряжения - UBEC (Universal Battery Eliminator Circuit). Некоторые специально ставят UBEC для большей надежности (чтобы не зависел от нагрева регулятора), или разносят питание мощных (сервы) и важных (приемник) потребителей на разные цепи. Стабилизаторы напряжения в свою очередь бывают двух типов - линейные и импульсные (обозначаются пометкой Switching). Импульсные стабилизаторы имеют более высокий КПД (особенно хорошие дорогие импульсные стабилизаторы), а следовательно меньше греются. Не рекомендуется запараллеливать питание нескольких стабилизаторов. В случае с линейными стабилизаторами это просто не рекомендуют делать из-за разброса параметров их электронных компонентов, а в случае с импульсными стабилизаторами это делать категорически нельзя. Поэтому, если у вас есть несколько регуляторов скорости со встроенным BEC и вы все их хотите подключить к одному приемнику (как это делается в мультикоптерах), то лучше вынуть плюсовые провода стабилизаторов у всех регуляторов кроме одного.

Микроконтроллер регулятора обычно имеет несколько параметров которые можно настроить. Набор чаще всего стандартный - это тормоз, тип отсечки, тип аккумулятора, напряжение отсечки, тайминг, мягкий старт и частота PWM, но иногда бывают и дополнительные специфичные параметры. Подробнее об этом и о программировании регуляторов я расскажу в следующей статье.

Хочу отметить, что разные модели регуляторов могут иметь различное "предназначение". Например, регулятор отлично работающий в самолете будет совсем никуда не годным в квадрокоптере, или наоборот. Это сложно оценить объективно, поэтому лучше ориентироваться на отзывы из жизни. Иногда практикуется такое развлечение, как перепрошивка программы микроконтроллера регулятора с целью улучшения его характеристик.

Подключение бесколлекторных моторов и регуляторов скорости

Регулятор скорости подключается к б/к мотору тремя проводами. Последовательность соединения не имеет значения, но если мотор вращается не в ту сторону, в которую вам требуется, то нужно просто поменять местами любые 2 провода. В качестве соединительных разъемов обычно используются разъемы типа "Gold Bullet Banana Connector ", они бывают разных диаметров. Сами моторы и регуляторы в зависимости от цены могут продаваться как с уже распаянными разъемами, так и просто с голыми проводами. Впрочем, если не планируете часто снимать/ставить эти детали, провода можно просто спаять между собой.

Подключение остальных проводов регулятора скорости вопросов вызывать не должно - разъем с "фишкой" подключается к требуемому каналу приемника, по этому разъему регулятор получает информацию для управления скоростью вращения двигателя, а если в нем встроенный стабилизатор, то через этот разъем он также питает приемник. Сам регулятор запитывается от аккумулятора (обычно там голые провода, поэтому надо припаять разъем питания, например, ). Современные регуляторы умеют автоматически определять количество банок аккумулятора, так что этот параметр обычно настраивать не требуется). Естественно, диапазон входного напряжения регулятора не безграничен и обычно указывается в его характеристиках. Самые распространенные регуляторы могут работать с аккумуляторами с количеством банок от 2 до 6. Регуляторы рассчитанные на большее количество банок как правило стоят значительно дороже, т. к. именно на 25В проходит граница между сравнительно дешевыми и более дорогими полевыми транзисторами.

Есть один очень важный момент по подключению регулятора , который возможно не все знают - удлинять провода регуляторов не рекомендуется . Если вам все же никуда не деться от удлинения, то: 1. Лучше удлинить провода от контроллера до мотора, 2. Желательно использовать провод большего сечения, чем стоит на регуляторе.

Дело в том, что при удлинении проводов от контроллера до батареи начинает сказываться их индуктивность и может возникнуть ситуация, когда уровень помех по напряжению питания на входе контроллера станет настолько высок, что контроллер не сможет правильно определить положение ротора мотора (иногда при этом еще и "повисает" процессор контроллера). Известно несколько случаев полного "выгорания в дым" контроллеров, при удлинении проводов со стороны аккумулятора до 30см. В то же время, при удлинении проводов от контроллера до мотора всего лишь слегка сдвигается задержка тайминга контроллера. Чем больше напряжение от которого питается регулятор, тем более критичен он к удлинению проводов.

Как резюме

В случае крайней необходимости можно удлинить провод от регулятора до аккумулятора, если сделать это проводом толстого сечения и чтобы итоговая длине в любом случае не превышала 20 см. В остальных случаях лучше удлинять провода на мотор и без лишней необходимости это не делать.

Сервоприводы

Я не буду сильно останавливаться на этом пункте, так как материал по сервам очень обширный и его в двух словах не расскажешь. Напишу основное.

Сервопривод (серва или рулевая машинка, сервомашинка) представляет собой не просто моторчик с резистором и шестеренками, но также и электронную плату которая преобразует сигнал управления с приемника и контролирует работу мотора сервы. Соответственно, сервы бывают цифровыми и аналоговыми. Цифровые сервы имеют внутри микроконтроллер (да, опять он) с программой управления, они работают быстрее и точнее аналоговых, но потребляют бОльшую мощность.

По размерам все сервоприводы делятся на несколько стандартных классов - гигантские, нормальные, мини, микро, нано. Бывают также низкопрофильные сервомашинки уменьшенной высоты. Основные характеристики - скорость перекладки и мощность усилия. Еще два важных свойства - точность отработки и надежность.

На самом деле выбор серв для модели - очень важное и ответственное действие, здесь тоже есть свои фавориты и разница в ценах между дешевыми и дорогими сервами может достигать десятков раз. Поэтому лучше подойти к этому делу ответственно и хорошенько изучить советы и отзывы перед покупкой, т. к. от этого зависит, во-первых, точность поведения модели в воздухе, во-вторых, вероятность потерять модель в один "прекрасный" момент из-за отказа сервомашинки.

Подключение сервомашинок

При подключении серв надо учитывать, что некоторые сервы рассчитаны на работу от повышенного напряжения и питание их от встроенного стабилизатора не позволит им развить полную заявленную мощность. Другая сторона вопроса, что если модель большая и на ней стоят мощные сервы, то максимального тока отдаваемого стабилизатором контроллера может не хватить для их работы, появляется риск просадки напряжения, что очень чревато для работы приемника, поэтому при использовании мощных серв необходимо в обязательном порядке просчитывать их аппетиты и возможности стабилизатора, а еще лучше замерять все это на практике, либо организовывать отдельную линию для питания приемника.

Так же, насколько я слышал, иногда бывают проблемы совместимости некоторых цифровых серв с некоторыми гироскопами, этот момент нужно также учитывать.

Общая картина подключений

Ну, надеюсь с подключениями этих устройств все более-менее ясно. В целом, получается что-то вроде этого:

Длинная статья получилась и занудная, все равно всего не получается охватить, но надеюсь что общее представление мне удалось раскрыть.

Опубліковано 11.04.2014

Схема регулятора

Схема условно разделена на две части: левая – микроконтроллер с логикой, правая – силовая часть. Силовую часть можно модифицировать для работы с двигателями другой мощности или с другим питающим напряжением.

Контроллер – ATMEGA168 . Гурманы могут сказать, что хватило бы и ATMEGA88 , а AT90PWM3 – это было бы “вааще по феншую”. Первый регулятор я как раз делал “по феншую”. Если у Вас есть возможность применять AT90PWM3 – это будет наиболее подходящий выбор. Но для моих задумок решительно не хватало 8 килобайт памяти. Поэтому я применил микроконтроллер ATMEGA168 .

Эта схема задумывалась как испытательный стенд. На котором предполагалось создать универсальный настраиваемый регулятор для работы с различными “калибрами” бесколлекторных двигателей: как с датчиками, так и без датчиков положения. В этой статье я опишу схему и принцип работы прошивки регулятора для управления бесколлекторными двигателями с датчиками Холла и без датчиков.

Питание

Питание схемы раздельное. Поскольку драйверы ключей требуют питание от 10В до 20В, используется питание 12В. Питание микроконтроллера осуществляется через DC-DC преобразователь, собранный на микросхеме . Можете применять линейный стабилизатор с выходным напряжением 5В. Предполагается, что напряжение VD может быть от 12В и выше и ограничивается возможностями драйвера ключей и самими ключами.

ШИМ и сигналы для ключей

На выходе OC0B(PD5) микроконтроллера U1 генерируется ШИМ сигнал. Он поступает на переключатели JP2 , JP3 . Этими переключателями можно выбрать вариант подачи ШИМ на ключи (на верхние, нижние или на все ключи). На схеме переключатель JP2 установлен в положение для подачи ШИМ сигнала на верхние ключи. Переключатель JP3 на схеме установлен в положение для отключения подачи ШИМ сигнала на нижние ключи. Не трудно догадаться, что если отключить ШИМ на верхних и нижних ключах, мы получим на выходе перманентный “полный вперед”, что может разорвать двигатель или регулятор в хлам. Поэтому, не забываем включать голову, переключая их. Если Вам не потребуется такие эксперименты – и Вы знаете, на какие ключи Вы будите подавать ШИМ, а на какие нет, просто не делайте переключателей. После переключателей ШИМ сигнал поступает на входы элементы логики “&” (U2 , U3 ). На эту же логику поступают 6 сигналов с выводов микроконтроллера PB0..PB5 , которые являются управляющими сигналами для 6 ключей. Таким образом, логические элементы (U2 , U3 ) накладывают ШИМ сигнал на управляющие сигналы. Если Вы уверены, что будете подавать ШИМ, скажем, только на нижние ключи, тогда ненужные элементы (U2 ) можно исключить из схемы, а соответствующие сигналы с микроконтроллера подавать на драйверы ключей. Т.е. на драйверы верхних ключей сигналы пойдут напрямую с микроконтроллера, а на нижние – через логические элементы.

Обратная связь (контроль напряжения фаз двигателя)

Напряжение фаз двигателя W ,V ,U через резистивные делители W – (R17,R25) , V – (R18, R24) , U – (R19, R23) поступают на входа контроллера ADC0(PC0) , ADC1(PC1) , ADC2(PC2) . Эти выводы используются как входы компараторов. (В примере описанном в AVR444.pdf от компании Atmel применяют не компараторы, а измерение напряжения с помощью ADC (АЦП). Я отказался от этого метода, поскольку время преобразования ADC не позволяло управлять скоростными двигателями). Резистивные делители выбираются таким образом, чтобы напряжение, подаваемое на вход микроконтроллера, не превышало допустимое. В данном случае, резисторами 10К и 5К делится на 3. Т.е. При питании двигателя 12В. на микроконтроллер будет подаваться 12В*5К/(10К+5К) = 4В . Опорное напряжение для компаратора (вход AIN1 ) подается от половинного напряжения питания двигателя через делитель (R5 , R6 , R7 , R8 ). Обратите внимание, резисторы (R5 , R6 ) по номиналу такие же, как и (R17,R25 ), (R18, R24 ),(R19, R23 ). Далее напряжение уменьшается вдвое делителем R7, R8 , после чего поступает на ногу AIN1 внутреннего компаратора микроконтроллера. Переключатель JP1 позволяет переключить опорное напряжение на напряжение “средней точки” формируемое резисторами (R20, R21, R22 ). Это делалось для экспериментов и себя не оправдало. Если нет в необходимости, JP1, R20, R21, R22 можно исключить из схемы.

Датчики Холла

Поскольку регулятор универсальный, он должен принимать сигналы от датчиков Холла в том случае, если используется двигатель с датчиками. Предполагается, что датчики Холла дискретные, тип SS41 . Допускается применение и других типов датчиков с дискретным выходом. Сигналы от трех датчиков поступают через резисторы R11, R12, R13 на переключатели JP4, JP5, JP6 . Резисторы R16, R15, R14 выступают в качестве подтягивающих резисторов. C7, С8, С9 – фильтрующие конденсаторы. Переключателями JP4, JP5, JP6 выбирается тип обратной связи с двигателем. Кроме изменения положения переключателей в программных настройках регулятора следует указать соответствующий тип двигателя (Sensorless или Sensored ).

Измерения аналоговых сигналов

На вход ADC5(PC5) через делитель R5, R6 подается напряжения питания двигателя. Это напряжение контролируется микроконтроллером.

На вход ADC3(PC3) поступает аналоговый сигнал от датчика тока. Датчик тока ACS756SA . Это датчик тока на основе эффекта Холла. Преимущество этого датчика в том, что он не использует шунт, а значит, имеет внутреннее сопротивление близкое к нулю, поэтому на нем не происходит тепловыделения. Кроме того, выход датчика аналоговый в пределах 5В, поэтому без каких-либо преобразований подается на вход АЦП микроконтроллера, что упрощает схему. Если потребуется датчик с большим диапазоном измерения тока, Вы просто заменяете существующий датчик новым, абсолютно не изменяя схему.

Если Вам хочется использовать шунт с последующей схемой усиления, согласования – пожалуйста.

Задающие сигналы

Сигнал, задающий обороты двигателя, с потенциометра RV1 поступает на вход ADC4(PC4) . Обратите внимание на резистор R9 – он шунтирует сигнал в случае обрыва провода к потенциометру.

Кроме того, есть вход RC сигнала, который повсеместно используется в дистанционно управляемых моделях. Выбор управляющего входа и его калибровка выполняется в программных настройках регулятора.

UART интерфейс

Сигналы TX, RX используются для настройки регулятора и выдачи информации о состоянии регулятора – обороты двигателя, ток, напряжение питания и т.п. Для настройки регулятора его можно подключить к USB порту компьютера, используя . Настройка выполняется через любую программу терминала. Например: Hyperterminal или Putty .

Прочее

Также имеются контакты реверса – вывод микроконтроллера PD3 . Если замкнуть эти контакты перед стартом двигателя, двигатель будет вращаться в обратном направлении.

Светодиод, сигнализирующий о состоянии регулятора, подключен к выводу PD4 .

Силовая часть

Драйвера ключей использовались IR2101 . У этого драйвера одно преимущество – низкая цена. Для слаботочных систем подойдет, для мощных ключей IR2101 будет слабоват. Один драйвер управляет двумя “N” канальными MOSFET транзисторами (верхним и нижним). Нам понадобиться три таких микросхемы.

Ключи нужно выбирать в зависимости от максимального тока и напряжения питания двигателя (выбору ключей и драйверов будет посвящена отдельная статья). На схеме обозначены IR540 , в реальности использовались K3069 . K3069 рассчитаны на напряжение 60В и ток 75А. Это явный перебор, но мне они достались даром в большом количестве (желаю и Вам такого счастья).

Конденсатор С19 включается параллельно питающей батареи. Чем больше его емкость – тем лучше. Этот конденсатор защищает батарею от бросков тока и ключи от значительной просадки напряжения. При отсутствии этого конденсатора Вам обеспечены как минимум проблемы с ключами. Если подключать батарею сразу к VD – может проскакивать искра. Искрогасящий резистор R32 используется в момент подключения к питающей батарее. Сразу подключаем “” батареи, затем подаем “+ ” на контакт Antispark . Ток течет через резистор и плавно заряжает конденсатор С19 . Через несколько секунд, подключаем контакт батареи к VD . При питании 12В можно Antispark не делать.

Возможности прошивки

  • возможность управлять двигателями с датчиками и без;
  • для бездатчикового двигателя три вида старта: без определения первоначального положения; с определением первоначального положения; комбинированный;
  • настройка угла опережения фазы для бездатчикового двигателя с шагом 1 градус;
  • возможность использовать один из двух задающих входов: 1-аналоговый, 2-RC;
  • калибровка входных сигналов;
  • реверс двигателя;
  • настройка регулятора по порту UART и получение данных от регулятора во время работы (обороты, ток, напряжение батареи);
  • частота ШИМ 16, 32 КГц.
  • настройка уровня ШИМ сигнала для старта двигателя;
  • контроль напряжения батарей. Два порога: ограничение и отсечка. При снижении напряжения батареи до порога ограничения обороты двигателя понижаются. При снижении ниже порога отсечки происходит полная остановка;
  • контроль тока двигателя. Два порога: ограничение и отсечка;
  • настраиваемый демпфер задающего сигнала;
  • настройка Dead time для ключей

Работа регулятора

Включение

Напряжение питания регулятора и двигателя раздельное, поэтому может возникнуть вопрос: в какой последовательности подавать напряжение. Я рекомендую подавать напряжение на схему регулятора. А затем подключать напряжение питания двигателя. Хотя при другой последовательности проблем не возникало. Соответственно, при одновременной подаче напряжения также проблем не возникало.

После включения двигатель издает 1 короткий сигнал (если звук не отключен), включается и постоянно светится светодиод. Регулятор готов к работе.

Для запуска двигателя следует увеличивать величину задающего сигнала. В случае использования задающего потенциометра, запуск двигателя начнется при достижении задающего напряжения уровня примерно 0.14 В. При необходимости можно выполнить калибровку входного сигнала, что позволяет использовать раные диапазоны управляющих напряжений. По умолчанию настроен демпфер задающего сигнала. При резком скачке задающего сигнала обороты двигателя будут расти плавно. Демпфер имеет несимметричную характеристику. Сброс оборотов происходит без задержки. При необходимости демпфер можно настроить или вовсе отключить.

Запуск

Запуск бездатчикового двигателя выполняется с установленным в настройках уровнем стартового напряжения. В момент старта положение ручки газа роли значения не имеет. При неудачной попытке старта попытка запуска повторяется, пока двигатель не начнет нормально вращаться. Если двигатель не может запуститься в течение 2-3 секунд попытки следует прекратить, убрать газ и перейти к настройке регулятора.

При опрокидывании двигателя или механическом заклинивании ротора срабатывает защита, и регулятор пытается перезапустить двигатель.

Запуск двигателя с датчиками Холла также выполняется с применением настроек для старта двигателя. Т.е. если для запуска двигателя с датчиками дать полный газ, то регулятор подаст напряжение, которое указано в настройках для старта. И только после того, как двигатель начнет вращаться, будет подано полное напряжение. Это несколько нестандартно для двигателя с датчиками, поскольку такие двигатели в основном применяются как тяговые, а в данном случае достичь максимального крутящего момента на старте, возможно, будет сложно. Тем не менее, в данном регуляторе присутствует такая особенность, которая защищает двигатель и регулятор от выхода со строя при механическом заклинивании двигателя.

Во время работы регулятор выдает данные об оборотах двигателя, токе, напряжении батарей через порт UART в формате:

E:минимальное напряжение батареи: максимальное напряжение батареи: максимальный ток: обороты двигателя (об/мин) A:текущее напряжение батареи: текущий ток: текущие обороты двигателя (об/мин)

Данные выдаются с периодичностью примерно 1 секунда. Скорость передачи по порту 9600.

Настройка регулятора

Для настройки регулятора его следует подключить к компьютеру с помощью . Скорость передачи по порту 9600.

Переход регулятора в режим настройки происходит при включении регулятора, когда задающий сигнал потенциометра больше нуля. Т.е. Для перевода регулятора в режим настройки следует повернуть ручку задающего потенциометра, после чего включить регулятор. В терминале появится приглашение в виде символа “> “. После чего можно вводить команды.

Регулятор воспринимает следующие команды (в разных версиях прошивки набор настроек и команд может отличаться):

h – вывод списка команд;
? – вывод настроек;
c – калибровка задающего сигнала;
d – сброс настроек к заводским настройкам.

команда “? ” выводит в терминал список всех доступных настроек и их значение. Например:

Motor.type=0 motor.magnets=12 motor.angle=7 motor.start.type=0 motor.start.time=10 pwm=32 pwm.start=15 pwm.min=10 voltage.limit=128 voltage.cutoff=120 current.limit=200 current.cutoff=250 system.sound=1 system.input=0 system.damper=10 system.deadtime=1

Изменить нужную настройку можно командой следующего формата:

<настройка>=<значение>

Например:

pwm.start=15

Если команда была дана корректно, настройка будет применена и сохранена. Проверить текущие настройки после их изменения можно командой “? “.

Измерения аналоговых сигналов (напряжение, ток) выполняются с помощью АЦП микроконтроллера. АЦП работает в 8-ми битном режиме. Точность измерения занижена намеренно для обеспечения приемлемой скорости преобразования аналогового сигнала. Соответственно, все аналоговые величины регулятор выдает в виде 8-ми битного числа, т.е. от 0 до 255.

Назначение настроек:

Список настроек, их описание:

Параметр Описание Значение
motor.type Тип мотора 0-Sensorless; 1-Sensored
motor.magnets Кол.во магнитов в роторе двигателя. Изпользуется только для расчета оборотов двигателя. 0..255, шт.
motor.angle Угол опережения фазы. Используется только для Sensorless двигателей. 0..30, градусов
motor.start.type Тип старта. Используется только для Sensorless двигателей. 0-без определения положения ротора; 1-с определением положения ротора; 2-комбинированный;
motor.start.time Время старта. 0..255, мс
pwm Частота PWM 16, 32, КГц
pwm.start Значение PWM (%) для старта двигателя. 0..50 %
pwm.min Значение минимального значения PWM (%), при котором двигатель вращается. 0..30 %
voltage.limit Напряжение батареи, при котором следует ограничивать мощность, подаваемую на двигатель. Указывается в показаниях ADC. 0..255*
voltage.cutoff Напряжение батареи, при котором следует выключать двигатель. Указывается в показаниях ADC. 0..255*
current.limit Ток, при котором следует ограничивать мощность, подаваемую на двигатель. Указывается в показаниях ADC. 0..255**
current.cutoff Ток, при котором следует выключать двигатель. Указывается в показаниях ADC. 0..255**
system.sound Включить/выключить звуковой сигнал, издаваемый двигателем 0-выключен; 1-включен;
system.input Задающий сигнал 0-потенциометр; 1-RC сигнал;
system.damper Демпфирование входного сигнала 0..255, условные единицы
system.deadtime Значение Dead Time для ключей в микросекундах 0..2, мкс

* – числовое значение 8-ми битного аналого цифрового преобразователя.
Рассчитывается по формуле: ADC = (U*R6/(R5+R6))*255/5
Где: U – напряжение в Вольтах; R5, R6 – сопротивление резисторов делителя в Омах.

После года зксплуатации накопилась куча сгоревших регуляторов.30 ампер simonk красные (кирпич),и такие желтые
Появился вопрос отремонтировать, или выбросить? А почему не попробовать отремонтировать, итак.

Желтые регуляторы такие

Начинаем диагностику с описания неисправности. Берем последний аппарат коптер сразу видим неадекватное поведение. Или его крутит, или переворачивает. При этом заметил один мотор стартует с запаздыванием. Это назовем первый вариант. Второй вариант при старте один из моторов не крутится, дрыгается так как будто обрыв обмоток. Потрогал пальцами мотор теплый, регулятор просто раскаленый. Третий вариант из регулятора идет дым мотор не крутится. В таком случае выключить сразу не удается, один из транзисторов горит так, что раскаляет печатную плату.
Плато регулятора четырех слойная прогорает насквозь ремонту не подлежит выглядит так
При этом транзистор трескается, отваливаются ножки, горит как сварка, плавит все проводники. Годится только на разборку. Из 5 вольтовых стабилизаторов можно собрать bec на 3 ампера такой, простая схема


Все 4 элемента соединяем параллельно.
Первый вариант рассматривать подробно не будем так как он является частью второго.
Итак, второй вариант. Берем регулятор, срезаем шубу, смотрим
Видим выводы ножек транзисторов. Не разбирая берем тестер, замеряем сопротивление переходов Уже можно сделать выводы средний транзистор исправный назовем вторая фаза, так как в фазе включено 2 транзистора и мы замеряем сопротивление схемы двух транзисторов, первый и третий пробиты, но не полностью транзисторы прогореть не успели, успели выключить, плато не прогорело, можно заняться ремонтом. Сразу упомянем первый вариант:
В случае когда двигатель продолжал работать, неисправным оказалась только первая фаза. Вторя, третья исправны. И еще при старте двигатель пропел песню как то слабо. При работе, на самолетах заметно снижение тяги. Сопротивление переходов такое же.
Отрываем пластину радиатора, приклеена теплопроводным герметиком, или резиновая теплопроводная прокладка стоит.


Очищаем от клея замеряем транзистры первого ряда



Красные, черные стрелки это щупы тестера. 2 ома это проводимость в обе стороны, то есть замыкание, пробой транзистора. Как же тогда звонится исправный транзистор? Исправный проверяется отпаяным от платы. неисправный так:

знак бесконечность это значит обрыв, 2ома замыкание, пробой.
это только один вариант сгоревшего. Может быть пробой всех выводов, или обрыв всех выводов, или проводимость частичная, отличная от исправного.

Еще забыл написать важную информацию. Второй вариант неисправности, когда двигатель не крутился, дрыгался. В выключенном состоянии если пальцами крутить двигатель чувствовалось явное сопротивление, по сравнению с остальными моторами. Объясняется просто. двигатель с магнитами это генератор, при вращении наводится эдс идукции в обмотке, через пробитые фазы ток замыкается, что и создает сопротивление.

Данные регули брал с КИТом коптера на али (с целью поиграться и попробовать -что же такое коптер), один сгорел до первого полета, и еще 4 в процессе учебных полетов. Вот появилось время и решил попробовать восстановить (зима, делать все-равно нечего).

Снял термоусадку, аккуратно поддел радиатор и увидел следующую картину:


Вверху, отмеченные стрелками-5ти вольтовые стабилизаторы 78M05, с них и начал проверку.



Проверил один и второй соответственно. На всех пяти сгоревших регулях стабилизаторы оказались исправны. Ниже стабилизаторов стоят МОСФЕТ-транзисторы-вот такие:


По два на каждую фазу(вычислил методом научного тыка):


Как работают МОСФЕТы разбираться было лень, поэтому для поиска сгоревших прибег к вышеописанному научному методу, взял тестер и попробовал померять сопротивление между ножками. Сразу повезло, на рабочих мосфетах показания были такие, нижние пимерно 10кОм


Верхние мосфеты около 70кОм


Неисправные же мосфеты показали КЗ и 3кОма



Выпаивал мосфеты паяльником, но лучше конечно феном. У меня таких же на замену не было-попросил товарища, он мне навыпаивал со старых материнок вот такие:


Они не на 30 ампер, а на 50, но подошли.
У меня на всех регулях мосфеты вылетали парами(одна фаза), на одном вылетели все три фазы.

В общем из пяти регулей получилось восстановить четыре. Проверку работоспособности проводил с помощью тестера для сервопривода:


Потом намазал термопастой, поставил радиатор и одел в термоусадку:


Ну вот, собственно, и все.

Если вы хотя бы раз в процессе использования квадрокоптера задавались вопросам о предназначении той или иной детали — о ESC Motor, например, — то наша статья как раз для вас.

ESC Motor, он же Electric Speed Controller — это контроллер скорости, устанавливаемый на бесколлекторных моторах. Основная задача этой детали — передача энергии от аккумулятора к трехфазному бесколлекторному мотору и преобразование в энергию постоянного тока. Еще одна задача electric speed controller — ограничение тока, который проходит через фазы при коммутации.

Для того, чтобы разобраться с работой контроллера ESC подробнее, стоит сначала подробнее узнать об устройстве мотора, чем мы и займемся в статье ниже.




Как работает бесколлекторный мотор квадрокоптера

Бесколлекторный мотор в своей конструкции имеет три фазы (или обмотки). Условно их называют латинскими буквами А, В и С. Все проводники соединяются в фазы с выводами на конце. На картинке ниже вы можете увидеть два способа соединения:

Процессы, происходящие внутри бесколлекторного двигателя в процессе работы, схожи с реакцией рамки с током под воздействием магнитного поля — той самой, из школьных физических опытов. Рамка при помещении в магнитное поле начинала вращаться, притом совершала это движение не постоянно, а до определенного момента. Для постоянного вращения был необходим переключатель направления тока.

По аналогии с физическим опытом: в бесколлекторном моторе рама — это обмотка (или фазы), а переключатель — электроника, которая в определенные моменты подает постоянное напряжение к нужным фазам стартера.

Для того, чтобы работа двигателя была непрерывной, электроника должна уметь распознавать положение ротора. Делает это она при помощи датчиков — оптических, магнитных, дискретных и так далее. Последние, к слову, используются в большинстве современных моделей.

В бесколлекторном двигателе, имеющем три фазы, установлены три датчика соответственно. Именно благодаря им управляющая электроника всегда имеет точные сведения о положении ротора, и в какой момент и к каким фазам требуется подать напряжение.

Но также среди бесколлекторных двигателей встречаются и такие виды, в устройстве которых датчики не предусмотрены. В таком случае положение ротора электроника определяет, проводя измерение напряжения на обмотке, которая в момент проверки находится не в работе.


Когда датчики не ставят?

Бесколлекторные моторы, имеющие в своей конструкции датчики, о которых речь шла выше, считаются наиболее современными, функциональными и технически оснащенными, но вместе с тем и самыми простыми. Всё это делает их наиболее предпочтительными для установки в радиомодели. Однако в мире нет ничего идеального, поэтому такой подвид двигателя также имеет определенные минусы.

Во-первых, для корректной работы от каждого датчика в двигателе необходимо проложить провод для обеспечения питания. Во-вторых, если хотя бы один из датчиков выйдет из строя, то весь двигатель не сможет работать. В-третьих, замена датчика требует полной разборки всего двигателя, а значит относится к дорогостоящим услугам в сервисном центре.

Двигатели с датчиками преимущественно ставятся в те квадрокоптеры, запуск которых связан с большими нагрузками на вал двигателя.

Если же нагрузки на вал не предусмотрены, то можно использовать и двигатель без датчиков. Такой подвид также используется и в моделях, в которых разместить двигатель с датчиками не позволяет конструкция.

Однако, при установке двигателей такого рода стоит учитывать, что в момент запуска могут происходить колебания или вращения оси двигателя в разные стороны.

Какую характеристику Вы бы хотели улучшить в квадрокоптерах?

Обязательный электронный узел

Возвращаемся к electric speed controller. Нужен этот механизм для регулятора скорости вращения электрического магнитного поля и одновременно с этим — для подачи напряжения на те фазы, на которые необходимо.

Конструкция ESC — микроконтроллер, в который встроена программа и силовые ключи MOSFET.

Характеризуется ESC по максимальному показателю подаваемого от батареи к мотору тока.

Из-за этого нередко начинающие радиолюбители-конструкторы отдают предпочтение регуляторам с высокими показателями запаса тока — это не всегда верно. Так, зачастую можно подобрать контроллер и с меньшим запасом, однако работать он будет лучше. К тому же плюсом будет и меньшая стоимость, и меньший вес.


Но вот чем отличаются контроллеры, так это качеством — нередки, к сожалению, случаи, когда производители экономят даже на термопасте. Из-за халатного отношения к производству регуляторы быстро сгорают. Именно по этой причине, если вы выбираете между двумя ESC с идентичными характеристиками, но различной ценой — отдайте предпочтение более дорогому.

Существует два вида регуляторов скорости: BEC и UBEC. BEC — Battery Eliminator Circuit — регулятор, имеющий в своей конструкции встроенный стабилизатор напряжения. Средний показатель мощности такой модели — 5В, именно ей и обеспечивается питание приемника и многой другой аппаратуры квадрокоптера.

UBEC — Universal Battery Eliminator Circuit — съемный стабилизатор напряжения. Некоторые радиомоделисты в конструировании квадрокоптеров отдают предпочтение именно Universal Battery Eliminator Circuit, так как считают, что этот вариант — более надежный, так как не зависит от температуры регулятора.

UBEC’и также делятся на два типа: импульсные и ионные. В целом они практически идентичны, но первые особенно хороши высоким показателем коэффициента полезной деятельности (который, к слову, растет вместе с ценой на изделие) и меньшим перегревом. Однако в случае с таким видом стабилизатора крайне важно не запараллеливать питание. В работе с ионными стабилизаторами такая установка хоть и не рекомендуется, но всё же допускается.

Микроконтроллер, установленный во всех регуляторах, имеет несколько настраиваемых параметров — тормоз, напряжение, время запуска и его жесткость и так далее.


Калибровка регулятора

Несмотря на то, что калибровка регуляторов зависит от конкретной модели квадрокоптера, на котором этот контроллер используется, есть один метод, общий для всех – настройка и калибровка сразу всех регуляторов.

Стоит отметить, что если у вас квадрокоптер от компании DJI, то вам калибровка не потребуется.

Важное замечание – перед тем, как начинать калибровку контроллеров, откалибруйте радио и подключите регуляторы к моторам.

Перед началом работ всегда убеждайтесь в их безопасности – снимите пропеллеры и отключите квадрокоптер от сети или USB.

Дальнейшие работы будут проходить в несколько этапов.

На первом этапе включите пульт дистанционного управления и выведите стик, отвечающий за подачу мощности, в максимальное положение. Если после подключения литий-полимерного аккумулятора огни на полётной аппаратуре начали циклически загораться красным, синим и желтым, значит, вы всё сделали правильно и APM готов к процедуре калибровки.

На втором этапе, не трогая стик мощности, отключите и снова подключите аккумулятор. Благодаря этой процедуре включится режим калибровки для автопилота. Подтверждением этому будет поочередное мигание красных и синих светодиодных огней, словно на автомобиле полиции.

Только после того, как прозвучит сигнал ровно столько раз, сколько банок имеет ваш аккумулятор (например, для 3S должно быть 3 сигнала), вы сможете убрать стик мощности в минимальное положение.

Если после этого вы услышите однократный, но продолжительный сигнал – значит, процесс калибровки окончен.

В качестве проверки немного поддайте моторам газу – если они начали вращаться, то всё сделано верно.

На третьем этапе совершается выход из режима калибровки регуляторов скорости – для этого стик мощности устанавливается в минимальное положение, а аккумулятор отключается.

Более подробную инструкцию о калибровке контроллеров вы можете посмотреть на видео ниже.

Похожие публикации